On deflation and singular symmetric positive semi-definite matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DDtBe for Band Symmetric Positive Definite Matrices

We present a new parallel factorization for band symmetric positive definite (s.p.d) matrices and show some of its applications. Let A be a band s.p.d matrix of order n and half bandwidth m. We show how to factor A as A =DDt Be using approximately 4nm2 jp parallel operations where p =21: is the number of processors. Having this factorization, we improve the time to solve Ax = b by a factor of m...

متن کامل

Product of three positive semi-definite matrices

In [2], the author showed that a square matrix with nonnegative determinant can always be written as the product of five or fewer positive semi-definite matrices. This is an extension to the result in [1] asserting that every matrix with positive determinant is the product of five or fewer positive definite matrices. Analogous to the analysis in [1], the author of [2] studied those matrices whi...

متن کامل

Deconvolution Density Estimation on Spaces of Positive Definite Symmetric Matrices

Motivated by applications in microwave engineering and diffusion tensor imaging, we study the problem of deconvolution density estimation on the space of positive definite symmetric matrices. We develop a nonparametric estimator for the density function of a random sample of positive definite matrices. Our estimator is based on the Helgason-Fourier transform and its inversion, the natural tools...

متن کامل

On deflation for symmetric tridiagonal matrices

K.V. Fernando developed an efficient approach for computation of an eigenvector of a tridiagonal matrix corresponding to an approximate eigenvalue. We supplement Fernando’s method with deflation procedures by Givens rotations. These deflations can be used in the Lanczos process and instead of the inverse iteration.

متن کامل

"Compress and eliminate" solver for symmetric positive definite sparse matrices

We propose a new approximate factorization for solving linear systems with symmetric positive definite sparse matrices. In a nutshell the algorithm is to apply hierarchically block Gaussian elimination and additionally compress the fill-in. The systems that have efficient compression of the fill-in mostly arise from discretization of partial differential equations. We show that the resulting fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2007

ISSN: 0377-0427

DOI: 10.1016/j.cam.2006.08.015